Closed incompressible surfaces in knot complements
نویسندگان
چکیده
منابع مشابه
C-incompressible Planar Surfaces in Knot Complements
In [6] Wu shows that if a link or a knot L in S3 in thin position has thin spheres, then the thin sphere of lowest width is an essential surface in the link complement. In this paper we show that if we further assume that L ⊂ S3 is prime, then the thin sphere of lowest width also does not have any cut-disks. We also prove an analogous result for a specific kind of tangles in
متن کاملIncompressible surfaces in 2-bridge knot complements
To each rational number p/q, with q odd, there is associated the 2-bridge knot Kp/q shown in Fig. 1. QI bl Fig. 1. The 2-bridge knot Kp/q In (a), the central grid consists of lines of slope +p/q, which one can imagine as being drawn on a square "pillowcase". In (b) this "pillowcase" is punctured and flattened out onto a plane, making the two "bridges" more evident. The knot drawn is K3/5, which...
متن کاملClosed Incompressible Surfaces of Genus Two in 3-bridge Knot Complements
In this paper, we characterize closed incompressible surfaces of genus two in the complements of 3-bridge knots and links. This characterization includes that of essential 2-string tangle decompositions for 3-bridge knots and links.
متن کاملClosed Incompressible Surfaces in the Complements of Positive Knots
We show that any closed incompressible surface in the complement of a positive knot is algebraically non-split from the knot, positive knots cannot bound non-free incompressible Seifert surfaces and that the splittability and the primeness of positive knots and links can be seen from their positive diagrams.
متن کاملHyperbolic Knot Complements without Closed Embedded Totally Geodesic Surfaces
It is conjectured that a hyperbolic knot complement does not contain a closed embedded totally geodesic surface. In this paper, we show that there are no such surfaces in the complements of hyperbolic 3-bridge knots and double torus knots. Some topological criteria for a closed essential surface failing to be totally geodesic are given. Roughly speaking, sufficiently ‘complicated’ surfaces can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1999
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-99-02233-3